Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(20): 2941-2949, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37471622

RESUMO

MicroRNA (miRNA) are small non-coding RNA involved in post-transcriptional gene regulation. Given their known involvement in early neurodevelopment processes, we here sought to identify common genetic variants associated with altered miRNA expression in the prenatal human brain. We performed small RNA sequencing on brain tissue from 112 genome-wide genotyped fetuses from the second trimester of gestation, identifying high-confidence (false discovery rate < 0.05) expression quantitative trait loci for 30 mature miRNA. Integrating our findings with genome-wide association study data for brain-related disorders, we implicate increased prenatal expression of miR-1908-5p as a risk mechanism for bipolar disorder and find that predicted mRNA targets of miR-1908-5p that are expressed in the fetal brain are enriched for common variant genetic association with the condition. Extending these analyses to other brain-related traits, we find that common genetic variation associated with increased miR-1908-5p expression in fetal brain is additionally associated with depressive symptoms, irritability, increased right cerebellum exterior volume and increased sleep duration in the general population. Our findings provide support to the view that altered miRNA expression can influence susceptibility to neuropsychiatric illness and suggest an early neurodevelopmental risk mechanism for bipolar disorder.


Assuntos
Transtorno Bipolar , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Locos de Características Quantitativas/genética , Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla , Encéfalo/metabolismo
2.
Mol Neuropsychiatry ; 5(4): 212-217, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31768374

RESUMO

A genome-wide significant association has been reported between non-coding variants at the dopamine D2 receptor (DRD2) gene locus and schizophrenia. However, effects of identified schizophrenia risk alleles on DRD2 function are yet to be demonstrated. Using highly sensitive measures of allele-specific expression, we have assessed cis-regulatory effects associated with genotype at lead SNP rs2514218 on DRD2expression in the adult human striatum. No significant differences were observed in the extent of allelic expression imbalance between samples that were genomic heterozygotes for rs2514218 (where cis-regulatory effects of the risk allele are compared with those of the non-risk allele within individual subjects) and samples that were homozygous for rs2514218 (where cis-regulatory effects of this SNP on each expressed DRD2 allele will be equal). We therefore conclude that rs2514218 genotype is not associated with large effects on overall DRD2 RNA expression, at least in postmortem adult striatum. Alternative explanations for the genetic association between this variant and schizophrenia include effects on DRD2 that are transcript specific, restricted to minor DRD2-expressing cell populations or elicited only under certain physiological circumstances, or mediation through effects on another gene (or genes) at the locus.

3.
Genome Biol ; 19(1): 194, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419947

RESUMO

BACKGROUND: Genetic influences on gene expression in the human fetal brain plausibly impact upon a variety of postnatal brain-related traits, including susceptibility to neuropsychiatric disorders. However, to date, there have been no studies that have mapped genome-wide expression quantitative trait loci (eQTL) specifically in the human prenatal brain. RESULTS: We performed deep RNA sequencing and genome-wide genotyping on a unique collection of 120 human brains from the second trimester of gestation to provide the first eQTL dataset derived exclusively from the human fetal brain. We identify high confidence cis-acting eQTL at the individual transcript as well as whole gene level, including many mapping to a common inversion polymorphism on chromosome 17q21. Fetal brain eQTL are enriched among risk variants for postnatal conditions including attention deficit hyperactivity disorder, schizophrenia, and bipolar disorder. We further identify changes in gene expression within the prenatal brain that potentially mediate risk for neuropsychiatric traits, including increased expression of C4A in association with genetic risk for schizophrenia, increased expression of LRRC57 in association with genetic risk for bipolar disorder, and altered expression of multiple genes within the chromosome 17q21 inversion in association with variants influencing the personality trait of neuroticism. CONCLUSIONS: We have mapped eQTL operating in the human fetal brain, providing evidence that these confer risk to certain neuropsychiatric disorders, and identifying gene expression changes that potentially mediate susceptibility to these conditions.


Assuntos
Transtorno Bipolar/genética , Encéfalo/metabolismo , Marcadores Genéticos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Esquizofrenia/genética , Transtorno Bipolar/patologia , Encéfalo/embriologia , Mapeamento Cromossômico , Feminino , Feto/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Fenótipo , Esquizofrenia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...